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Abstract: We re-examine the perturbative properties of four-dimensional non-com-

mutative QED by extending the pinch techniques to the ϑ-deformed case. The explicit

independence of the pinched gluon self-energy from gauge-fixing parameters and the ab-

sence of unphysical thresholds in the resummed propagators permits a complete check

of the optical theorem for the off-shell two-point function. The known tachyonic disper-

sion relations are recovered within this framework, as well as their improved version in

the (softly-broken) SUSY case. These applications should be considered as a first step

in constructing gauge-invariant truncations of the Schwinger–Dyson equations in the non-

commutative case. An interesting result of our formalism appears when considering the

theory in two dimensions: we observe a finite gauge-invariant contribution to the photon

mass because of a novel incarnation of IR/UV mixing, which survives the commutative

limit when matter is present.
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1. Introduction

The idea of introducing non-commutative space-time coordinates is not new [1] and has

proved itself useful or interesting in a wide range of different fields. Theoretical high-energy

physics observed a renewed interest toward non-commutativity in the last few years, due

to its relation with string theory: the use of non-commutative geometry in this context

was pioneered by Witten [2] in his formulation of open string field theory. More recently

compactifications of M-theory on non-commutative tori were also studied in [3, 4]. Finally,

after the discovery that spacelike non-commutativity emerges as an effective description of

open strings in a constant NS-NS Bµν field [5], this research line became really fashionable.

String theory reduces in a particular low-energy limit to a quantum field theory on non-

commutative Minkowski space-time characterized by the algebra

[x̂µ, x̂ν ] = iϑµν : (1.1)

this fact generated a flurry of activity (see [6] for reviews) to unveil the quantum prop-

erties of this novel class of models. Unfortunately the commutation relations (1.1) entail

a breaking of Lorentz invariance, and difficulties arise at the quantum level in obtaining
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the commutative ϑ → 0 limit in a sound way: These features are in open conflict with ob-

servations, making the phenomenological prospects of non-commutative models in particle

physics quite thin [7 – 9].

Nevertheless non-commutative QFT is very interesting in its own right, presenting

peculiar non-local interactions, non-perturbative solutions [10] and unconventional sym-

metries [11] that retain some properties of their string and D-brane ancestors. Concerning

the quantum consistency of the theory, the loss of Lorentz invariance is not by itself a

catastrophe. While important modifications to the dynamics, like non-trivial dispersion

relations, may be introduced by breaking Lorentz symmetry, most of the fundamental as-

pects of relativistic QFT are retained, like microcausality, the CPT theorem, and so on [12].

Non-locality could instead drastically change the quantum dynamics. A non-commutative

action can be constructed by deforming the ordinary, pointwise product of functions into

the twisted convolution product (f̃(k) is the Fourier transformed function)

f(x) ? g(x) =

∫
ddk

(2π)d
ddk′

(2π)d
f̃(k) g̃(k − k′) e−

i
2
ϑµνkµk′

ν ei k′
ρxρ

(1.2)

which manifestly induces terms with an arbitrarily high order of derivatives in the action.

This in turn implies an odd (IR/UV) “mixing” of short and long distance scales by which,

at the quantum level, ultraviolet divergences are transferred to the infrared domain [13]:

this effect impairs the familiar Wilsonian point of view on renormalization [13 – 15]. Scalar

theories have been widely studied and progresses have been recently reported in construct-

ing a renormalizable perturbative expansion [16]. The case of a gauge theory is more

difficult and no attempt has been done to prove systematically its consistency: a serious

conceptual obstacle appears because non-commutative IR divergences induce tachyons at

one-loop, and these destabilize the perturbative vacuum unless additional matter is intro-

duced in a suitable way [17]. The relation between these tachyonic instabilities and string

theory dynamics has been explored in [18].

Vacuum destabilization leaves one to ponder if a stable vacuum exists at all and, if this

is the case, whether the breaking of Lorentz invariance might make it possible for the theory

to develop exotic phases. These issues are intrinsically non-perturbative, and it would be

natural to take advantage of the discretized formulation of non-commutative gauge theories

[19 – 22]. Insisting on a continuum description, two approaches come instead to the mind:

to write down an effective (CJT) action for composite operators [23], and making use of the

Schwinger–Dyson equations (SD). Both approaches have been extensively exploited in the

commutative framework along the years, and extensions to the non-commutative setup have

been accomplished for the λϕ?4 theory, suggesting the possibility for a transition toward

“striped phases” [24]. The original proposal of the existence of a new vacuum state breaking

of translational invariance has been further confirmed by analytical computations [25, 26]

and by numerical simulations (in the lattice approach) [27]. Both the CJT effective action

and the gap equations obtained from the SD equations encode a resummation of some

infinite subset of Feynman diagrams. Unfortunately, in a gauge theory the mechanism

by which the unphysical degrees of freedom cancel against each other calls into action

a large number of different Feynman diagrams, so that a casual resummation of these
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is almost certain to waste gauge-invariance, and yield a gauge-dependent answer to an

ostensibly gauge-independent question. Already in the commutative case, for example, the

SD make up a set of coupled non-linear equations and a truncation (either on the number of

loops, or on the “order” of the n-point function examined, or both) is necessary to obtain a

tractable gap equation. A “gauge-invariant resummable” formalism has been proposed [28]

to achieve such a truncation without introducing gauge artifacts. These pinch techniques

(PT) consist in composing the ghost and gauge-fixing-dependent degrees of freedom from

different Feynman diagrams in such a way that gauge-independent propagators and vertices

are defined before the Schwinger–Dyson equations are written down, making a gauge-

independent truncation possible.

The pinch techniques are by now well established in the framework of ordinary gauge

theories. They have been used to investigate the generation of an effective gluon mass in

QCD [29], to properly describe resonant transition amplitudes and instable particles [31],

[32] and in QFT at finite temperatures they are used to describe magnetic screening [33], to

name just a few applications. Computations have been carried out explicitly to two-loops

order [34] and in general gauges, covariant and not, showing the consistency and unicity of

the definition of gauge-invariant propagators and vertices.

The main goal of this paper is the extension of the pinch techniques to the non-

commutative setup; the possibility of writing down a gap equation is left for future work.

A simpler application which we will discuss here is the analysis of the unitarity of the

theory. For scalar field theories with purely spacelike non-commutativity no loss of unitarity

appears, but its violation was observed in the timelike case in [35, 36] (that is, when

ϑµνqν has non-vanishing timelike components) in the guise of unphysical imaginary parts

in the particle’s self-energy. This issue was elucidated in [37], where the Dyson series

was analysed employing a modified Hamiltonian density, and it was observed that the

time ordering cannot be joined with the field contractions to yield the usual Feynman

propagators with the noncommutative phase eikϑq. Within this framework, unitarity can

be read out in terms of graphs in [38]. Similar analyses have been attempted for non-

commutative QCD [39, 40].

In the following, we shall concentrate on the case of purely spacelike noncommutativity.

Unitarity of spacelike non-commutative gauge theories has only been checked for on-shell

propagators and/or in specific gauges. In particular the authors of [40] have carried out

the one-loop renormalization in a generic ξ-gauge: on-shell the dependence on ξ cancels

together with all unphysical thresholds, but off-shell there is a host of unphysical thresholds

depending on ξ. In view of the extension of the SD approach to non-commutative gauge

theories, explicit gauge-independence of the off-shell propagator is certainly worth to be

obtained. We will show that the pinch techniques can be extended to the non-commutative

case, and give a solid check of unitarity for the off-shell propagators by computing the

diagram that are connected to it by the optical theorem. Concerning the presence of

the tachyonic pole and its cure by softly-breaking N = 4 SUSY, we confirm the analysis

presented in [12] and [14] where the computation was carried out within the background

field method. This should not come as a surprise because the pinched propagator coincides

with the background gauge field one for ξQ = 1 in the commutative setup.
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New results are obtained when discussing the two-dimensional case. Gauge theories in

two dimensions do not have propagating local degrees of freedom and this property should

survive the non-commutative deformation: at the classical level, by simply choosing any

axial gauge, the non-commutative U(1) theory reduces to its commutative cousin, that is

a trivial non-interacting theory. On the other hand, it is known that the relation between

perturbative and non-perturbative aspects is subtle for 2D gauge theories [41, 42] and non-

commutativity has already produced some surprises when computing Wilson loops [43 –

46]. In the present case, we would expect naively no correction to the free-propagator when

matter is absent, even in the non-commutative case, due to the gauge-invariant meaning

of the pinched self-energy. We obtain instead a surprising result: working in a covariant

gauge, the dimensionally regularized theory, in the limit D → 2, exhibits, even in absence

of matter, a non-trivial ϑ-dependent correction to the dispersion relation which owes its

finiteness to a fine cancellation between planar and non-planar contribution. Moreover

as ϑ → 0, we observe an anomalous behavior from the matter contributions, apparently

inducing a mass for the photon: this is analogous to what happens in three-dimensions

for the Chern-Simons term generated by Majorana fermions [47]. On the other hand,

when ϑ → ∞ the original infrared divergences, tamed by non-commutativity, reappear,

leaving us with a ultraviolet logarithmic divergent term. This is a twisted incarnation of

the UV-IR effect. We remark that our result should be meaningful, due to the use of the

gauge-invariant pinched self-energy.

The plan of the paper is the following: in section 2 we describe how to extend the pinch

techniques to the non-commutative case and we present the computation of the “pinched”

gluon self-energy. In section 3 we check the on-shell behavior of the pinched propagator, we

study unitarity in the spacelike case by proving the optical theorem and discuss analyticity

by analyzing the dispersion relation1 connecting the real and imaginary parts of the gluon

self-energy. Section 4 is devoted to study the two-dimensional gauge theory, with and

without matter. Section 5 contains some concluding remarks and appendices A and B are

devoted to some technical aspects of the computations.

2. Pinch techniques

One of the main problems in quantizing gauge theories is to deal with the unphysical poles

and thresholds that generically plague local Green functions. On a theoretical ground this

is not an issue: the well-known answer is to limit the analysis to gauge-invariant quantities,

which are free of such troubles. On a practical ground, however, the question remains. In

fact, simple invariant quantities like the S-matrix elements are only defined on-shell, and

the off-shell physics is out of their grasp. Besides, more general off-shell observables like

1We warn the reader about the two meanings of the term “dispersion relation” which are used here and

in the literature. On the one hand, it can be taken to mean the dependency of a particle’s energy on its

momentum, E2(~p), which becomes non-trivial because of the breaking of Lorentz invariance. The second

use refers to the relation between the real and imaginary parts of an analytic function. The distinction is

always clear from the context.
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the Wilson and Polyakov loops are non-local and this makes them much more difficult to

compute.

Pinch techniques (PT), in the original formulation by Cornwall [28, 29], provide a

manageable solution to this problems. These consist in an algorithm that rearranges the S-

matrix elements of gauge theories and produces off-shell proper correlation functions which

satisfy the same Ward identities (WI) as those produced by the classical Lagrangian [29, 30].

The PT off-shell Green functions, in addition to being gauge invariant by construction, also

satisfy basic theoretical requirements such as unitarity, analiticity and renormalizability.

They can be also used as the building blocks of gauge-invariant Schwinger–Dyson equations,

which allow to discuss non perturbative questions as vacuum stability, dynamical mass

generation [29], and the behavior of unstable states [32] in the commutative setup. A

comprehensive discussion of this topic is out of the goals of the present paper (see [48] for

excellent reviews); here, instead, we shall briefly outline how these techniques have been

applied in commutative theories to the case we are interested in: the one-loop vacuum

polarization.

In a nutshell, PT consists in a judicious use of the cancellations that underlie the well-

known gauge invariance of the S-matrix. One can concentrate on a two-particle process,

and identify which scattering amplitude contains the relevant information about self-energy

by simply looking at the structure of the exchanged momenta. The classical choice is the

fermion-antifermion scattering process f(p1)+ f̄(p2) → f ′(k1)+ f̄ ′(k2), but any other two-

particle process would be adequate, since the result does not depend on this choice [49]. It

is convenient to paramterize the one-loop amplitude f f̄ → f ′f̄ ′ in any covariant ξ-gauge2

so that the structure of the exchanged momenta is most evident:

〈f(p1)f̄(p2)|T (s, t)|f ′(k1)f̄
′(k2)〉 = Γµ(p1, p2)∆

(ξ)
µα(s)Π(ξ)αβ(s)∆

(ξ)
βν (s)Γν(k1, k2) +

+ Γ
(ξ)µ
1 (p1, p2)∆

(ξ)
µν (s)Γν(k1, k2) + (2.1)

+ Γµ(p1, p2)∆
(ξ)
µν (s)Γ

(ξ)ν
1 (k1, k2) + B(ξ)(p1, p2,−k1,−k2),

where s and t are Mandelstam variables. In (2.1) the symbol Π(ξ)αβ(s) designates the

gauge-dependent vacuum polarization, and Γ
(ξ)ν
1 and B(ξ) denote respectively the one-loop

correction to the cubic f̄Af vertex and box graphs; ∆
(ξ)
µν (s) and Γµ stand for the tree-level

gluon propagator and vertex. External current are included in vertices Γ(ξ)ν and Γ
(ξ)ν
1 .

Finally, the superscript (ξ) over each term in (2.1) marks the intrinsic gauge dependence of

the different contributions. The above decomposition corresponds to summing the diagrams

depicted in figure 1.

Gauge-invariance of the S-matrix ensures that the sum of all the graphs (a) + (b) +

(b̄) + (c) + (c̄) of figure 1 is independent of the gauge parameter ξ, and so the matrix

element 〈f(p1)f̄(p2)|T (s, t)|f ′(k1)f̄
′(k2)〉 must also be independent of ξ. The cancellation

occurring between these different diagrams is well-known but rather intricate, and it has

some surprises in store. By examining the analytical structure of this scattering amplitude

one can easily identify a few different sectors: some terms depend solely on s, and there are

2With this expression, we mean the usual gauge breaking term given by 1

2ξ
(∂µAµ)2.
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+

(a)

+

(b)

+

(b̄)

+

(c) (c̄)

Figure 1: The contribution (a) corresponds to Π(ξ)αβ ; (b) and (b̄) contain the one-loop correction

Γ(ξ)µ to the vertex, and (c),(c̄) are the box diagrams B(ξ).

other, more complicated terms that carry an intrinsic dependence both on s and t. This

suggests that the cancellations responsible for the invariance of (2.1) are not “global”, but

occur separately in different channels, so that more than one invariant structure is buried

there.

That this naive observation leads to a concrete and useful application is non-trivial.

Cornwall [29] has indeed shown that it is possible to rearrange (2.1) in the following form

〈f(p1)f̄(p2)|T (s, t)|f(k1)f̄(k2)〉 = Γµ(p1, p2)∆
(ξ)
µα(s)Π̂αβ(s)∆

(ξ)
βν (s)Γν(p3, p4) +

+ Γ̂µ(p1, p2)∆
(ξ)
µν (s)Γν(k1, k2) + (2.2)

+ Γµ(p1, p2)∆
(ξ)
µν (s)Γ̂ν(k1, k2) + B̂(p1, p2,−k1,−k2),

where the pinched polarization tensor Π̂g
αβ(s), vertex Γ̂µ and box B̂ are separately gauge-

invariant and independent of ξ. The surviving dependence on ξ in ∆
(ξ)
µν (s) is irrelevant,

and it drops out as soon as the tree level propagator hits the external current in Γµ or Γ̂µ;

it has been left just for future convenience.

Practically, the pinched representation (2.2) is obtained in two steps. First one extracts

from the second and third lines of (2.1) those contributions which depend solely on the

Mandelstam variable s. Then one combines these contributions with Π(ξ)αβ to yield a

gauge-invariant quantity Π̂g
µν . Clearly, some more work is required in the second and the

third line to single out Γ̂ and B̂, but as long as one is interested only in the pinched vacuum

polarization, this step is not relevant. More details can be found in the literature.

The experienced reader may doubt that the procedure we just sketched out is uniquely

determined. In fact, since we are dealing with scattering amplitudes, any redefinition that

is proportional to the equations of motion leaves equation (2.2) unaltered. To fix this

ambiguity and consistently promote off-shell the pinched Green functions one imposes,

apart from a ξ-independence, a few reasonable constraints:

1. The resulting Green’s functions must be free from unphysical poles and thresholds.

2. The Green functions must satisfy the tree-level Ward identities dictated by the clas-

sical Lagrangian.

3. The Green functions must be resummable and compatible with the off-shell Schwin-

ger–Dyson equations. This means, for example, that the ξ-dependence must cancel

before integrating over loop momenta.
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4. The resummed Green functions must revert, when evaluated on-shell, to the conven-

tional ones. This means that the resummation prescription must leave the position

of the poles unchanged, since this is a gauge-invariant information.

These constraints make the pinched Green’s functions uniquely defined.

In the commutative setup there would be additional items in this list, making ref-

erence to the constraints dictated by unitarity and analyticity. Since we deal with non-

commutative field theories, where unitarity might be jeopardized by nonlocal effects, we

shall drop these requirements and proceed without imposing them. As we will show, the

outcome of this approach is threefold: first of all, it shows the applicability of the pinch

techniques in the non-commutative framework, even though the additional constraints of

unitarity and analyticity are not imposed. Secondly, it provides us with a gauge-invariant

test of unitarity for the non-commutative theory; and finally, it allows for an investigation

of the analyticity properties through the analysis of the dispersion relation.

We are now ready to illustrate some details of the computations leading to the pinched

non-commutative vacuum polarization. As is well-known in the literature, the tenso-

rial structures involved in the one-loop unintegrated amplitudes are unchanged by non-

commutativity, even though Lorentz invariance is broken3. The only difference consists in

the presence of a trigonometric factor inside the vertices that spreads the nonlocal infor-

mation, and depends on the loop and external momenta (see appendix A for the Feynman

rules). This new ingredient, however, does not impair the pinching procedure, and it can be

examined separately as we now show. Consider, for example, the first diagram in figure 2.

Employing the Feynman rules of appendix A for the gauge fields and Dirac fermions, the

trigonometric factors associated with this amplitude are

eip1ϑp2/2−i(k2−k1)ϑr/2 sin

(
qϑ`2

2

)
= eip1ϑp2/2−i(k2−k1)ϑ(k2−`2)/2 sin

(
qϑ`2

2

)
=

= eip1ϑp2/2+ik1ϑk2/2

[
e−iqϑ`2 sin

(
qϑ`2

2

)]
. (2.3)

This contains an overall factor associated with the scattering of two fermions, which de-

pends only on the external momenta, and another quantity, in brackets, which is relevant

for the loop integration. However when taking into account the contribution of the “mir-

ror” diagram (the second one in figure 2), one sees that there the dependence on the phase

factors is got by simply setting q → −q in (2.3). Summing the pinch contributions of this

two diagrams, the trigonometric factors recombine into

2ieip1ϑp2/2+ik1ϑk2/2

[
sin2

(
qϑ`2

2

)]
. (2.4)

The quantity in brackets has the right structure to mimic the phase factor of the vacuum

polarization, so it can be recombined with it to yield a pinched polarization tensor. The

process we just outlined repeats itself unaltered for all the other diagrams. Thus, in the

3A new tensorial structure will emerge only after integrating over loop momentum.
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k1

r

k2
`2

`1

q

p1

p2

→ I(a)
pinch. =

→ I(b)
pinch. =

→ I(c)
pinch. =

Figure 2: One-loop propagator-like contributions to the pinch technique.

following, we shall focus just on the tensorial structure, and we shall reinsert the necessary

trigonometric factors upon integrating.

The next step consists in extracting the s-dependent contributions from diagrams (a),

(b) and (c) as shown in figure 2. This is accomplished by means of a classical trick. Let

us denote respectively with r, `1 and `2 the momenta of fermion and of the two gluons

running in the loop in the first diagram in figure 2. In addition, call the external momenta

attached to this loop k1 and k2. Then the following silly Ward identities hold

6`1 = (6r− 6k1) = (6r − m) − (6k1 − m) = S−1(r) − S−1(k1)

6`2 = (6k2− 6r) = (6k2 − m) − (6r − m) = S−1(k2) − S−1(r), (2.5)

where S is the free fermion propagator. Equations (2.5) state that any term of the form

6`1 or 6`2 present in the diagrams spawns two terms: one is proportional to the equation of

motion of the external leg, and it can be dropped; the second one is proportional to the

inverse of the propagators of the fermion running inside the loop. The net effect of this

procedure is to squeeze away “pinch” the internal fermionic propagators. Graphically, this

mechanism is represented by the diagrams appearing on the r.h.s. of figure 2. We have

obtained effective Feynman diagrams where one or both of the fermion propagators have

been pinched: these diagrams exhibit clearly their dependence on merely s. The same

trick allows us to handle the other two diagrams in figure 2. In the present discussion

we have neglected diagrams governing the renormalization of the external legs, since their

total effect on the pinching procedure vanishes.

Now we collect the different contributions to the pinched vacuum polarization. We

start from those coming from the diagram (a) in figure 1. These include the three ordinary

– 8 –
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Igluon Itadpole Ighost

Figure 3: Ordinary contributions to Π
(ξ)
αβ .

contributions to the vacuum polarization tensor of non-commutative QED, represented in

figure 3. Their value is reported below:

Igluon =

[
gαβ

k2
+

2 q2 gαβ + (2D − 3)kαkβ

k2p2
+ (1 − ξ)

(−k2gαβ + kαkβ

p4
− 2

q2kαkβ

k2p4
+

+2
q2gαβ

k4
− q4gαβ

k2p4

)
+ (1 − ξ)2

(
q4kαkβ

k4p4

)]
+ (k ↔ p), (2.6)

Ighost = −
(

kαpβ + kβpα

k2p2

)
Itadpole = 2(1 − D)

gαβ

k2
− 2(1 − ξ)

(
gαβ

k2
− kαkβ

k4

)
. (2.7)

We have denoted with q the external momentum and with k, p the loop momenta. Then

we have pinched contributions from the s-parts of diagrams (b) and (c), as shown in figure

2.

I(a)
pinch. = 4q2 gαβ

k2 p2
+ 2(1 − ξ)

[
q2 kβ kα

k4 p2
+

q2 pα pβ

k2 p4
+

(
q4

k2 p4
+

q4

k4 p2

)
gαβ−

−
(

1

k4
+

1

p4

)
q2gαβ

]
− 2(1 − ξ)2

(
q4 pα pβ

k4 p4

)
, (2.8)

I(b)
pinch. = 2(1 − ξ)

(
−q4gαβ

k2p4
− q4gαβ

k4p2

)
+ 2(1 − ξ)2

q4pαpβ

k4p4
, (2.9)

I(c)
pinch. = −2(1 − ξ)

(
q2gαβ

k4
+

q2gαβ

p4

)
. (2.10)

We remark that these are all independent of the dimension D. Summing up all these

contributions we find that the the pinched polariszation tensor is

Π̂αβ = −2g2

∫
dDk

(4π)D/2

8(q2gαβ − qαqβ) + (4 − 2D)(k2gαβ − kαkβ)

k2(k + q)2
sin2

(
qϑk

2

)
, (2.11)

where we have restored the relevant trigonometric factor. Equation (2.11) is particularly

intriguing not only because it is manifestly transverse, but also because it signals the

possible presence of evanescent terms in two dimensions: there is a potential competition

between the second integral, which is logarithmically ultraviolet divergent, and its vanishing

coefficient when approaching D = 2. This issue will be discussed in detail in Sect.4.
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The computations leading to the Euclidean version of the integrals in (2.11) are shown

in appendix B. The final result takes on the form

Π̂g
µν = Π̂c(q

2, |q̃|2)
(

gµν − qµqν

q2
− q̃µq̃ν

|q̃|2
)
+

(
Π̂ϑ(q2, |q̃|2) + Π̂c(q

2, |q̃|2)
) q̃µq̃ν

|q̃|2 . (2.12)

Where q̃ν = ϑµνqν and the conventional decomposition of |q̃|2 is |q̃|2 = q•q = ΘE(p2
0+p2

1)+

ΘB(p2
2 + p2

3), and (as remarked above) we are considering the case ΘE = 0. The notation

here is chosen to underline the existence of two spacetime invariants for non-commutative

gauge theories, q2 and |q̃|2. In the following, to lighten the notation, the dependence on

the two invariants is understood. The explicit values of the two functions are given by the

following integrals over the Feynman parameters

Π̂c = − g2

(4π)D/2

∫ 1

0
dx

8q2 + (4 − 2D)(−M2 + q2x2)

(M2)2−D/2

×
(

Γ(2 − D

2
) − 2

( |q̃|M
2

)2−D
2

K2−D
2

(M |q̃|)
)

,

Π̂ϑ = g2 (4 − 2D)

(4π)D/2
2

∫ 1

0
dx 2M2

( |q̃|
2M

)2−D/2

K−D/2(M |q̃|), (2.13)

where M ≡
√

x(1 − x)q2 and Kn is the modified Bessel function of the second kind.

3. The four-dimensional theory

We remarked above that in the commutative case one further requires, among the defining

properties of pinch-technique resummed amplitudes, the off-shell optical relations, analyt-

icity and invariance of the position of the poles. In the non-commutative case the situation

is more involved because such properties could be spoiled by non-commutative effects. This

section is devoted to a detailed analysis of these issues. We begin by studying the on-shell

properties of the pinched propagator in the supersymmetric extension of the theory: as

we discussed above it is an important consistency check that the on-shell physics is un-

touched by the pinching procedure. In the following sections we discuss the unitarity and

analyticity properties of the pinched propagator, reverting to the matterless case.

3.1 Dispersion relations in the supersymmetric extension of the theory

It is well known that in four dimensions the UV/IR mixing induces a quadratic IR diver-

gence in the self-energy, which produces a tachyonic divergence in the dispersion relation.

As observed in [12],[14], one can recover vacuum stability by introducing a sufficient amount

of supersymmetric matter: SUSY in fact, by improving the UV behavior of quantum loops,

acts as a regulator for the infrared divergences of a non-commutative theory, because the

UV effects are tamed before they can couple to ϑµν and induce large-distance divergences.

Adding the contribution of nf fermions and ns scalars we find

Π̂c =
g2

(4π)D/2

∫ 1

0
dx

[
−

[2(2 − D)(−M2
g + q2x2) + 8q2]

(M2
g )2−D/2

A(mg) +

– 10 –
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+
2 D q2x(1 − x)

(M2
f )2−D/2

∑

f

A(mf ) +
q2(4x2 − 1)

(M2
s )2−D/2

∑

s

A(ms)

]

, (3.1)

Π̂ϑ =
g2

(4π)D/2

∫ 1

0
dx

[
2(4 − 2D)B(mg) + 2D

∑

f

B(mf ) − 4
∑

s

B(ms)

]
. (3.2)

Here we have included softly supersymmetry-breaking masses mf , ms, mg for fermions,

scalars and gluons. The dependence on the masses is contained in the functions Mi:

A(mi) =

[

Γ(2 − D

2
) − 2

( |q̃|Mi

2

)2−D
2

K2−D
2

(Mi|q̃|)
]

, (3.3)

B(mi) = 2M2
i

( |q̃|
2Mi

)2−D/2

K−D/2(Mi|q̃|), (3.4)

where Mi(mi, q) = m2
i + x(1 − x)q2. The planar part of the vacuum polarization is UV-

divergent for D → 4 and needs to be renormalized. We will perform this procedure just

like in the commutative case: we choose a subtraction scale µ, so that

A(mi) → −
[
log

(
Mi

µ

)
+ K0(Mi|q̃|)

]
. (3.5)

Two limits of these functions are worthy of being considered.

One of the virtues of the pinch techniques is their ability to compute the β-functions,

and we would like to recover these in the appropriate limit. This limit consists in reaching

the ultraviolet by taking the arguments of the Bessel functions to be large, so that their

contribution is exponentially suppressed, together with q À mi:

Π̂c =
1

4π2

(
11

3
− 2

3
nf − 1

6
ns

)
log

(
q

µ

)
. (3.6)

We recover the standard β-function for softly broken susy gauge theories: it is a further

check of the validity of the PT resummation prescription.

Of course one could compute the β-function using the background field method (BFM);

however, as pointed out in [32], BFM n-point functions display a residual dependence on the

gauge parameter ξQ employed in fixing the gauge for the quantum fields inside the loops,

and this may lead to unphysical thresholds. Requiring the absence of such unphysical

effects forces the choice ξQ = 1, which cannot be otherwise motivated; in this case the

one-loop n-point functions evaluated in BFM and the ones we computed using the pinch

techniques coincide.

A second limit concerns approaching the infrared with small arguments of the Bessels,

so that:

A(mi) → log (|q̃|µ) . (3.7)

In this limit we have:

Π̂c = − 1

4π2

(
11

3
− 2

3
nf − 1

6
ns

)
log (|q̃|µ) . (3.8)
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p1 →

p2 ← ← k2, β

← k1, α p1 →

p2 ← ← k2, β

← k1, α

p1 →

p2 ← ← k2, β

← k1, α

Figure 4: s- t- u-channel amplitudes

As already pointed out in [12], this expression shows that the running of the coupling con-

stant in the infrared is similar to the one in the ultraviolet. A different sign indicates that

the theory becomes weakly coupled at low energy. The duality q → 1
|q̃| is thus interpreted

as another incarnation of the UV-IR mixing. The expression we found for the self-energy,

through equations (3.1) and (3.2), coincides with the one found in [12] and [14]. In particu-

lar, the pure gluon contribution to the equation for the position of the poles gives rise to the

well-known tachyonic dispersion relation. This last feature implies that the PT-resummed

amplitudes reduce to the unpinched value when evaluated on-shell as they should. In other

words, the resummation prescription does not modify the position of the poles.

3.2 Optical theorem and unitarity

Having verified the on-shell properties of the pinched propagator we move to the analysis

of the off-shell physics. Let us first of all show how the pinch techniques can be employed

to check the optical theorem for off-shell two-point functions. For on-shell matrix elements

the optical theorem states that if the S-matrix is unitary then:

=m〈qq̄|T |qq̄〉 =
1

2

(
1

2

)∫
dΩ〈qq̄|T |gg〉〈gg|T |qq̄〉. (3.9)

On the left hand side we have the S-matrix element for a q-q̄ scattering process (the one

from which the pinched vacuum polarization is obtained), and on the right hand side

we have the amplitudes for quark-gluon scattering. The diagrams contributing to this

amplitude are obtained by cutting through the S-matrix and are displayed in figure 4. The

factor of 1/2 appears because the final on-shell gluons are identical particles.

In the last section we built a gauge-independent self-energy by resumming all the one-

loop s-channel contributions to the matrix elements on the left hand side. The analogue of

this procedure on the right-hand side consists in recasting it as a sum of gauge-independent

– 12 –
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s, t and u-channel contributions. If the two sides match, we will obtain a direct check of

unitarity in the s-channel. Let then M be the qq̄ scattering S-matrix element, and T be

the q-g scattering amplitude:

M .
= 〈qq̄|T |qq̄〉 , T .

= 〈qq̄|T |gg〉. (3.10)

T consists of the Ts, Tt and Tu contributions displayed in figure 4: we must take the squared

modulus and sum over all physical gluon polarizations.

The matching of different channels from M and T is non-trivial, we shall show, in fact,

that the “pinched optical theorem” relates Ms to the whole of Ts plus pieces from Tt and

Tu. On second thoughts this comes as no surprise: by cutting through the box diagram one

obtains Tt and Tu, and it is just to be expected that if the box gives pinch contributions, so

must Tt and Tu. In the following we specialize to D = 4 and adopt Minkowskian signature.

In order to analytically continue the results of the previous section one needs to send:

p2
E → −p2

M , p̃2
E → −p̃2

M ,

(p • p)E = ΘB(p2
2 + p2

3) → (p • p)M = ΘB(p2
2 + p2

3).

Our computation follows closely [32]. The contributions are:

T αβ
s = Jµ(p1, p2) sin

−p2ϑp1

2
∆µν(q)V

ναβ(q, k1, k2)

T αβ
t+u = Jαβ(p1, p1 + k1, p2) sin p2ϑk2

2 sin p1ϑk1

2 + (k1, α ↔ k2, β), (3.11)

where Jµ(p1, p2) = gv̄(p2)γ
µu(p1) and Jαβ(p1, p1 + k1, p2) = g2v̄(p2)γ

αSF (p1 + k1)γ
βu(p1),

while Vναβ(q, k1, k2) is the three-gluon vertex. The optical theorem states that

=m{Ms + Mt + Mu} =

∫
dΓ

4

(
T µν

s + T µν
t+u

)
Pµρ(k1)Pνσ(k2)

(
T ∗

s
ρσ + T ∗

t+u
ρσ

)
,

where Ms contains the pinched vacuum polarization tensor Π̂µν ,

=mMs =

∫
dΓ

1

4q4
Jµ(p1, p2)Π̂µνJ∗ν(p1, p2) sin2 k1ϑk2

2
sin2 p1ϑp2

2
(3.12)

and Pµν represents the polarization tensor (the sum over the gluons’ physical polarizations)

Pµν(q, η)
.
= −gµν +

ηµqν + qµην

(η · q) +
η2qµqν

(η · q)2 . (3.13)

Before we plunge into the calculations, it is important to make a few remarks concern-

ing the consistence of the pinch techniques as they are applied to the squared modulus of

T . One should notice that in this case we have a dependence on two “gauge-parameters”:

the gauge-fixing one, ξ, and ηµ, which is introduced upon choosing the two independent

physical polarization vectors to be summed over. We demand that the pinch contributions

from the second and third graphs cancel the ξ and ηµ-dependence of the first diagram. Let
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us begin by showing the independence from ξ. By decomposing the three-gluon vertex as

V T = V F + V P we have

V F
µνρ(q, p, k) = g [(p − k)µgνρ + 2qνgµρ − 2qρgµν ] sin

pϑk

2
, (3.14)

V P
µνρ(q, p, k) = g[kρgµν − pνgµρ] sin

pϑk

2
. (3.15)

We observe that for on-shell gluons, which obey kµPµν = 0 and k2 = 0, the term V P
µνρ

dies upon hitting Pµρ Pνσ. The s-channel’s explicit dependence on the ξ-gauge disappears

thanks to the fact that the gauge-fixing term is longitudinal, so it also drops off as it hits

the conserved external fermionic current4. Then the s-channel propagator boils down to

its Feynman-gauge values and all dependence on ξ vanishes. We must still prove that also

the dependence on ηµ gets cancelled as well.

Luckily, all the phases factorize exactly like in the first section and the following set of

Ward identities can be obtained:

k1
α(Ts)αβ =

(
2
k1

µk2
β

q2
− gµβ

)
Jµ(p1, p2) sin p1ϑp2

2 sin k1ϑk2

2 ,

k2
β(Ts)αβ =

(
2
k2

µk1
α

q2
+ gµα

)
Jµ(p1, p2) sin p1ϑp2

2 sin k1ϑk2

2 ,

k1
α(Tt+u)αβ = Jβ(p1, p2) sin p1ϑp2

2 sin k1ϑk2

2 ,

k2
β(Tt+u)αβ = −Jα(p1, p2) sin p1ϑp2

2 sin k1ϑk2

2 ,

k1
αk2

β(Ts)αβ = −k2µJµ(p1, p2) sin p1ϑp2

2 sin k1ϑk2

2 ,

k1
αk2

β(Tt+u)αβ = k2
βJβ(p1, p2) sin p1ϑp2

2 sin k1ϑk2

2 .

Defining:

G .
= −kµ

2

q2
Jµ(pin, pout) sin p1ϑp2

2 sin k1ϑk2

2 =
kµ
1

q2
Jµ(pin, pout) sin p1ϑp2

2 sin k1ϑk2

2 , (3.16)

we arrive at the relevant cancellation laws displayed in figure 5

k1
α(Ttot)αβ = 2k2

βG, (3.17)

k2
β(Ttot)αβ = 2k1

αG, (3.18)

k1
αk2

β(Ttot)αβ = 0. (3.19)

Thanks to this cancellation it is straightforward to recast the optical theorem as

=m{Ms + Mt + Mu} =
1

4

∫
dΓ

[
(T µν

s T ∗
s µν − 8GG∗)

︸ ︷︷ ︸
propagator−like

+
(
T µν

s T ∗
t+u

µν + T µν
t+uT ∗

s µν

)
︸ ︷︷ ︸

vertex−like

+

4Had we not used a covariant gauge, current conservation would not have been sufficient to guarantee

the gauge fixing independence. Like in the commutative case [32], in this case one resorts to the following

Ward identity

q
µ
V

F
µνρ(q,−p − k) = (p2

− k
2)gνρ.

– 14 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
6

kµ
1 = kν

2+

(
+

)
kµ
1 = −

Figure 5: s- channel (first line), and t- and u- channels cancellations

+ T µν
t+uT ∗

t+uµν︸ ︷︷ ︸
box−like

]
, (3.20)

where all the dependence on the gauge parameters ξ and ηµ has vanished.

We have shown that a gauge-independent decomposition is possible, and we have

identified the contribution which ought to be related by the optical theorem to Π̂µν . We

just need to compute the other side of the optical theorem’s equation: for this we just need

to compute

=mMs =

∫
dΓ

4q4
Jµ(p1, p2) [T µν

s T ∗
s µν − 8GG∗] J∗ν(p1, p2) sin2 k1ϑk2

2
sin2 p1ϑp2

2
=

=

∫
dΓ

1

2
Jµ(p1, p2)

1

q2

[
4q2(gµν − qµqν

q2
) +

(kµ
1 − kµ

2 )(kν
1 − kν

2 )

q4

]
×

× 1

q2
J∗ν(p1, p2) sin2 k1ϑk2

2
sin2 p1ϑp2

2
. (3.21)

We introduce (p = k1 and k2 = q − k1)

1

2
Aµν .

= 4q2

(
gµν − qµqν

q2

)
+ (2p − q)µ(2p − q)ν , (3.22)

in terms of which the optical theorem states

=mΠ̂µν =
1

2

∫
dΩ

(
1 − cos pϑq

2

)
Aµν . (3.23)

The left hand side is easily evaluated from (2.13) using

=m Kν(x) = (−1)ν+1 π

2
Jν(|x|).

We find that for q2 < 0 there are no imaginary parts, while for q2 > 0

=m Π̂c(q) =
q2

2π

(
11

12
+

2 sin z − 8z2 sin z − 2z cos z

8z3

)

=m
{
Π̂c(q) + Π̂ϑ(q)

}
=

q2

2π

(
11

12
+

−4 sin z − 6z2 sin z + 4z cos z

8z3

)
, (3.24)
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where z = −|q̃||q|
2

. We consider now the right hand side, that is more easily analyzed by

employing the transformations in the planes (q0, q1) and (q2, q3) admitted by the residual

Lorentz invariance: without loss of generality we can take qµ = (q0, 0, 0, q3) and we obtain

pϑq = −ϑq3|~p| cos ϕ sin χ = −|q̃||~p| cos ϕ sin χ,

where (χ,ϕ) are polar and azimuthal angles defined with respect to x3. The phase space

integrals evaluate to

1

(2π)6

∫
d3p d3k

4EpEk

(1 − cos pϑq)

2
(2π)4δ(4)(p + q + k)Aµν =

=
1

8(2π)2

∫ π

0
dϑ

∫ 2π

0
dϕ sin χ

(
1 − cos (−|q̃||~p| cos ϕ sin χ)

2

)
Aµν . (3.25)

We can then project Aµν on the two independent polarizations:

Aµν .
= I1

[
gµν − qµqν

q2
− q̃µq̃ν

|q̃|2
]

+ I2
q̃µq̃ν

|q̃|2 , (3.26)

I1 = 7
2q2 − 2

(pϑq)2

|q̃|2 = 7
2q2 + 2

|q̃|2|~p|2 cos ϕ sin χ

|q̃|2 , (3.27)

I2 = 4q2 + 4
(pϑq)2

|q̃|2 = 4q2 − 4
|q̃|2|~p|2 cos ϕ sin χ

|q̃|2 (3.28)

to obtain
∫

dΩ

(
1 − cos pϑq

2

)
I1 =

q2

4π

(
11

12
+

2 sin z − 8z2 sin z − 2z cos z

8z3

)
,

∫
dΩ

(
1 − cos pϑq

2

)
I2 =

q2

4π

(
11

12
+

−4 sin z − 6z2 sin z + z cos z

8z3

)
. (3.29)

This expression coincides with one half of equation (3.24). This completes our check of

unitarity for the non-commutative U(1) gauge theory.

3.3 Analyticity

An analytic two-point function has the property that its real and imaginary parts are re-

lated by a dispersion relation. Additional care is needed when dealing with gauge field

theories off-shell, because of gauge artifacts. Unphysical gauge-dependent degrees of free-

dom may introduce unphysical Landau poles that, in turn, can spoil analyticity. The PT

resummation prescription provides an off-shell two-point function which takes only physical

Landau singularities into account. In the non-commutative setup we can use this amplitude

to investigate the deformation’s effect on the analytic structure of the two-point function.

We start by checking the dispersion relation involving the retarded self-energy ’s real and

imaginary parts

Re Π(R)(q) =
1

π
P

∫ +∞

−∞
dω

ImΠ(R)(ω, ~q)

ω − q0
=

2

π
P

∫ +∞

−∞
dωω

ImΠ(R)(ω, ~q)

ω2 − (q0)2
. (3.30)
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Figure 6: The imaginary parts =m Π̂c(q) and =m
{
Π̂c + Π̂ϑ

}
as functions of |q̃|, for g2 = 10−2.

As already pointed out in [50], for positive energy, the Feynman and retarded self-energies

coincide, so an expression analogous to (3.30) must hold for Π̂µν . Inserting equation (3.24)

into (3.30) and evaluating the integral we easily obtain the real part of the self-energy.

This, in turn, agrees with the value of the real part of the self-energy extracted directly

from (2.13). This shows that the two-point function’s analyticity is preserved in the non-

commutative setup so the resummed amplitudes propagate physically meaningful informa-

tion.

The-non planar part of Π̂g
µν satisfies an unsubtracted dispersion relation but even

though the imaginary part is regular in the ϑp → 0 limit it gives rise, once integrated,

to an IR-divergent real part. This divergence was observed in [50], and it was interpreted

as an effect of the UV-IR mixing. However the off-shell amplitudes considered there are

gauge-dependent, so they may contain unphysical degrees of freedom which in principle

can spoil the physical nature of this divergence. Working with the pinched self-energy we

proved that the IR-divergence comes out from the integration in the high energy region

and so it is indeed a physical UV-IR effect.

4. The two-dimensional theory

In this section we will employ our gauge-invariant resummed self-energy to analyze the two-

dimensional theory. There are several reasons to consider this apparently simple situation:

first of all, bidimensional non-commutative gauge theories present a non-trivial behavior

at the perturbative level, exhibiting unexpected effects when Wilson loops are evaluated.

It was found in [43] that, in the large-ϑ limit, non-planar contributions are not suppressed,

leading to an anomalous finite result. Later on, it was shown [44] that area-preserving

diffeomorphism invariance is violated in perturbation theory, a surprising feature further

confirmed by recent computations [45] (see also [46] for a nonperturbative approach to this

problem).

Since all these phenomena appear at the perturbative level in gauge-invariant observ-

ables, it is quite tempting to explore the gauge-invariant propagator itself. Actually all

of these results were obtained by using axial gauges, that explicitly trivialize the self-

interactions of the gauge fields in two-dimensions. This procedure leads to infrared-finite

results, without resorting to the choice of any explicit cut-off once a suitable prescription
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for the gauge propagator is adopted. In our case, instead, we have used a covariant gauge-

fixing in deriving the self-energy in D-dimensions: by taking the limit D → 2 in our general

expression, we will obtain automatically a dimensionally regularized result.

In both the D → 2 and ϑ → 0 limits one would naively expect a vanishing gauge-

invariant self-energy when matter is absent: two-dimensional gauge theories have no phys-

ical local degrees of freedom and, since we are considering the U(1)-case, a free theory is

recovered for ϑ = 0 at the classical level. This last feature should be true even in pres-

ence of matter. We anticipate that quantum effects will produce a quite different behavior

instead, as we will see in the following.

4.1 The gluon contribution

We start by recalling the expression for Π̂g
µν in equation (2.12):

Π̂g
µν(q) =

−g2

(4π)D/2

∫ 1

0
dx

{
8q2 + (4 − 2D)(q2x2 − M2

g )

(M2
g )2−D/2

(
gµν − qµqν

q2

)
×

×
[
Γ(2 − D/2) − 2

( |q̃|Mg

2

)2−D/2

K2−D/2(Mg|q̃|)
]

+

+ (4 − 2D)

[
2

(
1

2Mg

)1−D/2

(|q̃|Mg)
2−D/2 K−D/2(Mg|q̃|)

]
q̃µq̃ν

q̃2

}
. (4.1)

We notice that for 2 < D < 4 the limit ϑ → 0 can be taken safely in the first term,

obtaining the expected decoupling in the usual transverse part, while the new transverse

structure produces the well known 1/ϑ(D−2) divergence, generated by the IR/UV mixing.

On the other hand, as ϑ → ∞ we recover the pure planar theory.

Things change when one tries to go down to D = 2. A first observation concerns the

infrared and ultraviolet behavior. In order to understand the potential divergences and

the peculiar role played by non-commutativity, it is useful to take a step back and look

directly at the Feynman integral

∫
dDk

[
8q2gµν

k2(q + k)2
+ (4 − 2D)

(k2gµν − 2kµkν)

k2(q + k)2

]
sin2

(
qϑk

2

)
. (4.2)

One immediately sees how non-commutativity plays a crucial role in approaching two

dimensions: the potential infrared divergence in the first term is smoothed out by the

sin2( qϑk
2 ) term. Here non-commutativity acts as an infrared regulator when one computes

the momentum integral. The second contribution is instead a classical example of an

evanescent term, being multiplied by (4− 2D), that in presence of ultraviolet and infrared

divergences could generate a finite result in the limit D → 2.

A phenomenon of this type was noticed in [41], where Wilson loops were computed in

non-abelian D = 2 gauge theories by using dimensional regularization. In our case non-

commutativity provides a natural cut-off and the evanescent term gives no contribution in

the two-dimensional limit. These features are displayed by explicitly performing the limit
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D → 2 in equation (4.1): we simply obtain

Π̂g
µν(q) = − g2

(4π)

[ ∫ 1

0
dx

(
8q2

)

M2

(

1 − (|q̃|Mg) K1(Mg|q̃|)
)]

(gµν − qµqν

q2
). (4.3)

Here one can see the role played by non-commutativity: we get an infrared-regulated

contribution from the first term of (4.1), which owes its finiteness to a delicate cancellation

between the planar and the non-planar sectors, piloted by the non-commutative phase. We

remark that the term proportional to q̃µq̃ν in equation (4.1), which displayed in D = 4 the

known IR/UV effects, is the product of a finite term times D − 2 and so it vanishes.

Now we can explore a couple of different limits. Using the expansion of the Bessel

function we take the limit s = (|q̃||q|/2) → 0, observing that the full self-energy vanishes.

We recover the free theory result, as could be well expected because no ultraviolet di-

vergence was regularized by non-commutativity in the final expression. We will see that

when matter is present the situation changes drastically. The opposite, s → ∞ limit is

more interesting: this computation should reproduce the planar part of a commutative

non-abelian theory. In order to perform the calculation, we write down the relevant part

of the self-energy as follows:

∫ 1

0
dx

q2

M2
g

[1 − (|q̃|Mg)K1(Mg|q̃|)]=2

∫ 1

0
dx

1√
1 − x

[
1

x
− (|q̃||q|/2) 1√

x
K1(|q̃||q|

√
x/2)

]
=

= 2

∫ 1

0
dx

[
1√

1 − x

1

x
− K1(

√
x)√

x(1 − x/s2)
+

K1(
√

x)√
x(1 − x/s2)

− 2sK1(s
√

x)√
x(1 − x)

]

. (4.4)

The above expression can be easily evaluated in the limit s → ∞:

2

[∫ 1

0
dx

(
1√

1 − x

1

x
− K1(

√
x)√

x

)
+ ln(s2) +

∫ ∞

1
dx

K1(
√

x)√
x

]
→ 2 ln(s2), (4.5)

implying the following behavior of the vacuum polarization

lim
s→∞

Π̂g
µν = −g2 8

π
ln(s)

(
gµν − qµqν

q2

)
. (4.6)

We observe therefore a curious “twisted” incarnation of the familiar IR/UV mixing: the

original infrared divergence is cured by the non-commutativity, and it reappears as an

ultraviolet effect as s → ∞. In this limit the effective infrared cut-off is removed, since the

non-planar contribution is suppressed completely. We remark that our result is a simple

example of how, in two dimensions, the limit of large-ϑ can produce non-trivial effects in

perturbation theory, as shown in [43, 44] by computing Wilson loops.

4.2 Fermionic and scalar contributions

It is a simple exercise to compute the contribution to self-energy of nf fermions and ns

scalars, taking the limit D = 2 in the general expressions (3.1) and (3.2):

Π̂f
µν =

∑

nf

g2

π

∫ 1

0
dx

{
q2x(1 − x)

M2
f

[1 − (|q̃|Mf )K1] + (Mf |q̃|) K1

}

(gµν − qµqν

q2
), (4.7)
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Π̂s
µν =

∑

ns

g2

π

∫ 1

0
dx

{
q2(x2 − 1/4)

M2
s

[1 − (|q̃|Ms)K1] − (Ms|q̃|)K1

}

(gµν − qµqν

q2
). (4.8)

The above expressions are finite even in the massless case: in particular the fermionic

contribution is regular independently of the cancellation between planar and non-planar

sectors, and the infrared safeness of the massless scalar integral is ensured by the same

mechanism as in the gauged case.

We observe, at variance with the pure gauge case, that the structure q̃µq̃ν/q̃
2 leads

to a finite contribution. Since in two dimensions ϑµν = ϑεµν , it happens that q̃µq̃ν/q̃
2 =

gµν − qµqν/q
2, and no new structure appears. Taking the limit s → 0 we have the following

surprising result:

Π̂f
µν →

∑

nf

g2

(π)

∫ 1

0
dx (Mf |q̃|) K1(Mf |q̃|)(gµν − qµqν

q2
) → nf

g2

π
(gµν − qµqν

q2
), (4.9)

Π̂s
µν → −

∑

ns

g2

π

∫ 1

0
dx (Mf |q̃|) K1(Mf |q̃|)(gµν − qµqν

q2
) → −ns

g2

π
(gµν − qµqν

q2
). (4.10)

We are left with a constant term which wastes the decoupling: this is a “canonical” IR/UV

effect, as one can easily realize, because it originates from the q̃µq̃ν/q̃
2 term. For D > 2 it

produces the well known 1/ϑ(D−2) divergence, while in two dimensions it provides a finite,

ϑ-independent result as the non-commutativity is sent to zero.

This effect of producing a Schwinger mass at one-loop for the gauge field is the exact

analogue of the induction of a Chern-Simons term in three dimension when Majorana

fermions are coupled to a non-commutative U(1) theory [47]. In that case too a non-

vanishing Chern-Simons term, generated by the non-commutative interaction, survives as

ϑ → 0, leading to a one-loop mass for the gauge field.

The opposite situation, the limit s → ∞ is straightforward to compute in the massive

case, the Bessel function being exponentially suppressed, and we are left with the regular

planar contributions. As we anticipated before, the massless scalar case exhibits the same

anomalous behavior as the pure gauge case at large s: exploiting the same technique, we

easily derive

lim
s→∞

Π̂s
µν =

ns

3

g2

π
ln(s)(gµν − qµqν

q2
). (4.11)

When ns = 24 this cancels exactly the anomalous divergence coming from the gauge sector.

We do not have an an explanation for this curious fine-tuning.

5. Conclusions and outlook

An interesting issue in non-commutative gauge theories is whether unitarity and analyticity

of the Green functions are spoiled by non-local effects, both on-shell and off-shell. A con-

sistent, gauge-invariant resummation formalism is required to investigate these properties,

and a leading candidate is provided by the pinch techniques framework.

In this paper we have worked out a gauge-invariant resummation prescription, ex-

tending the pinch techniques to non-commutative gauge theories. We have shown how
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resummed off-shell Green’s functions satisfy the requirements that are usually imposed in

the commutative setup to implement a consistent gauge-invariant reorganization of the

perturbative expansion. In particular, an important check of the validity of the pinch tech-

niques requires that the resummed self-energy reduce on-shell to the unpinched one. We

have verified that this is the case: in particular, the pinched gluon self-energy displays, in

four dimensions, the well know tachyonic divergence that leads to vacuum destabilization.

With this gauge-invariant resummation formalism at our disposal we proceeded to

carry out an analysis of the optical theorem, verifying that the pinch techniques provide

a powerful tool for investigating the issue of unitarity of non-commutative gauge theo-

ries. Previous analyses in this field employed techniques which were sensitive to unphysical

gauge effects; our main result is a test of the optical theorem in the s-channel, employ-

ing off-shell resummed functions, for purely spacelike non-commutativity. For timelike

non-commutativity we found evidence for unitarity violation both on-shell and off-shell,

consistently with previously known results.

Finally we came to the analysis of the D → 2 limit. The two-dimensional theory is

expected to be trivial due to the absence of propagating degrees of freedom for the pure

gauge sector. We found instead a non-trivial correction to the dispersion relation even in

the absence of matter. Moreover, when matter is included we found an anomalous behavior

in the ϑ → 0 limit. A finite term survives the commutative limit, violating the expected

decoupling and inducing a mass term for the photon. In the ϑ → ∞ limit instead, a twisted

version of the UV-IR mixing comes out: the original infrared divergences regulated by the

non-commutativity reappear in the ultraviolet domain.

In the longer run, the most interesting issues are related with the possibility of writing

down a consistent Schwinger–Dyson equation to investigate vacuum destabilization from

a non-perturbative point of view. There are at least two motivations for doing so. A first

reason is related to the possibility that vacuum destabilization might simply be an artifact

of perturbation theory. A more speculative motivation is related to the possibility for the

existence of striped phases like the ones observed in non-commutative scalar theories [24]

in the gauged case. It should be remarked that a transition to a striped phase here would

be particularly puzzling, since translations form a subset of the full U(1)? gauge group.

Quite surprisingly, however, we found hints that such an exotic phase might be realized in

the three-dimensional topologically massive case [51, 52].

For this purpose, the next step would be to write down a gauge-invariant gap equation

for the pinch-technique propagator ∆̂. Truncating the Schwinger–Dyson equations to one-

loop order one has

∆̂−1(q) = ∆̂−1
0 (q) + V̂ (3)(q, p, k)∆̂(p)∆̂(k)V̂ (3)(−k,−p,−q) +

+V̂ (4)(q, p,−q,−p)∆̂(p) + pinch terms, (5.1)

where V̂ are the full vertices. The pinch terms are the usual ones, but they must be

computed using the exact pinch-technique propagators ∆̂(q), for which one can take an

Ansatz of the form

∆̂(q) = T (q)

(
−gµν +

qµqν

q2

)
+ Θ(q)

(
q̃µq̃ν

q2

)
+ (1 − ξ)

(
qµqν

q4

)
. (5.2)
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The propagator’s trivial dependence on the gauge fixing is retained in the framework of the

pinch techniques, as explained above, and this should be used to test that the truncation

is indeed self-consistent and gauge-independent.

A first trivial attempt consists, for example, in seeing what happens when one computes

the gap equation (5.1) for non-commutative QCD, with all pinch terms included, using

the tree-level form of the vertices. So doing one encounters encouraging cancellations

among the ξ-dependent terms, but there are some gauge-fixing-dependent terms (e.g. those

proportional to Θ(q)) that don’t cancel. This is not at all a surprise, since one should in

principle determine the V̂ (3) vertex through its own Scwhinger–Dyson equation. In the

commutative case one can use the pinch-technique Ward identities

qα(V̂ − V̂0)αµν(q, p,−q,−p) = Π̂µν(q + p) − Π̂µν(p) (5.3)

to find the form of V̂ (3). Hopefully an analogous approach can lead, like in the commutative

case, to a meaningful, gauge-invariant gap equation.
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A. Feynman rules

In this appendix we shall summarize the Euclidean Feynman rules adopted in this paper

Gluon sector:

µ νp
1

p2
(gµν − (1 − ξ)pµpν)

µ
q

ν
r

λp

−(2π)dδ(p + q + r)2ig(gλµ(p − q)ν + gµν(q − r)λ+

+gνλ(r − p)µ) sin
(

pϑq
2

)

ν
q

α
r

µ
p

s
β

(2π)dδ(p + q + r + s)(−4g2)

(
sin pϑq

2 sin rϑs
2 (gµαgνβ − gµβgνα)+

+ sin pϑr
2 sin qϑs

2 (gµνgαβ − gµβgνα)+

+ sin qϑr
2 sin pϑs

2 (gµνgαβ − gνβgµα)

)
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Ghost sector:

1

p2
p

(2π)dδ(p + q + r)2igpµ sin
pϑq

2
p

µ

q

Dirac Fermions:

1

6p + mp

(2π)dδ(p + q + r)ge
irϑp

2

pr

µ

q

Maiorana Fermions:

1

6p + mp

(2π)dδ(p + q + r)g sin

(
rϑp

2

)

pr

µ

q

Where pϑq = pµϑµνqν .

B. Relevant scalar and euclidean tensorial integrals

This appendix is devoted to the evaluation of the relevant scalar and tensorial integrals.

To begin with, we shall consider the tadpole-like integral, which is taken to be identically

zero in the commutative case,

T =

∫
ddk

(2π)d
sin2

(
kϑq

2

)
1

k2
. (B.1)
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This integral for d ≥ 2 is ultraviolet divergent, but infrared finite. In fact the presence

of the trigonometric function smooths the behavior for small momenta. This should be

contrasted with the commutative counterpart where dangerous infrared divergences appear

when d approaches two.

A rigorous dimensional regularization of the integral (B.1) requires its evaluation for

d < 2 and then to define its values in d ≥ 2 by analytic continuation. We have

T=
1

2
lim

M→0

∫ ∞

0
dt

∫
ddk

(2π)d

(
1 − e−ikϑq

)
e−t(k2+M2)=

πd/2

2(2π)d
lim

M→0

∫ ∞

0

dt

td/2

(
1 − e−

|q̃|2

4t

)
e−tM2

=

=
1

2(4π)d/2
lim

M→0

(
Γ

(
d

2
− 1

)
(M2)d/2−1 − 2

d
2

(
M2

)d
2
−1(

M2|q̃|2
) 1

2
− d

4 Kd/2−1(M |q̃|)
)

=

=
1

2(4π)d/2
lim

M→0

[(
2d−4|q̃|4−dΓ

(
d − 4

2

)
M2 − 2d−2|q̃|2−dΓ

(
d

2
− 1

)
+ O(M4)

)
+

+Md

( |q̃|2
4

Γ

(
−d

2

)
− |q̃|4

32
Γ

(
−1 − d

2

)
M2 + O(M3)

)]
= −2d−3|q̃|2−d

(4π)d/2
Γ

(
d

2
− 1

)
. (B.2)

Around d = 2, we have the following expansion

T = − 1

4π (d − 2)
+

γ

8π
+

log(πµ2|q̃|2)
8π

+ O(d − 2). (B.3)

The second scalar integral we need is given by

S =

∫
ddk

(2π)d
1

k2(k + q)2
sin2

(
qϑk

2

)
=

=
1

2

[∫
ddk

(2π)d
1

k2(k + q)2︸ ︷︷ ︸
(a)

−
∫

ddk

(2π)d
1

k2(k + q)2
eikϑq

︸ ︷︷ ︸
(b)

]
. (B.4)

We have

S(a) =
1

2

∫ 1

0
dx

∫
ddk

(2π)d
1

(k2 + x(1 − x)q2)2
=

Γ(2 − d/2)

2(4π)d/2

∫ 1

0
dx(x(1 − x)q2)d/2−2. (B.5)

and

S(b) =
1

2

∫ 1

0
dx

∫
ddk

(2π)d
eikϑq

(k2 + x(1 − x)q2)2
=

1

2

∫ 1

0
dx

∫ ∞

0
dt t

∫
ddk

(2π)d
eikϑq−t(k2+x(1−x)q2) =

=
1

2(4π)d/2

∫ 1

0
dx

∫ ∞

0
dt t1−d/2e−

|q̃|2

4t
−tx(1−x)q2

=
1

(4π)d/2

( |q̃|
2M

)2− d
2

K d
2
−2(|q̃|M), (B.6)

with M =
√

q2x (1 − x). Next we consider the tensorial integral

Iµν =

∫
ddk

(2π)d
(2kµ + qµ)(2kν + qν) − 2k2gµν

k2(k + q)2
sin2

(
qϑk

2

)
. (B.7)
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This is manifestly transverse: in fact

qµIµν =

∫
ddk

(2π)d
(2(k · q) + q2)(2kν + qν) − 2k2qν

k2(k + q)2
sin2

(
qϑk

2

)
=

=

∫
ddk

(2π)d
((q + k)2 − k2)(2kν + qν) − 2k2qν

k2(k + q)2
sin2

(
qϑk

2

)
=

=

∫
ddk

(2π)d

(
(2kν + qν)

k2
− (2kν + qν)

(k + q)2
− 2

qν

(k + q)2

)
sin2

(
qϑk

2

)
=

=

∫
ddk

(2π)d

( qν

k2
+

qν

k2
− 2

qν

k2

)
sin2

(
qϑk

2

)
= 0. (B.8)

To compute this integral, first we decompose it in its planar and non planar parts

Iplan.
µν =

1

2

∫
ddk

(2π)d
(2kµ + qµ)(2kν + qν) − 2k2gµν

k2(k + q)2

Inon−plan.
µν =

1

2

∫
ddk

(2π)d
(2kµ + qµ)(2kν + qν) − 2k2gµν

k2(k + q)2
eikϑq (B.9)

and then we compute them separately. To avoid the question about how to extend the

different tensor structures in non integer dimensions, we shall compute the integrals fol-

lowing the most straightforward path, which always begins by introducing the Feynman

parameters

Iplan.
µν =

1

2

∫ 1

0
dx

∫
ddk

(2π)d
(2kµ + (1 − 2x)qµ)(2kν + (1 − 2x)qν) − 2(k − xq)2gµν

(k2 + x(1 − x)q2)2
=

=
1

2

∫ 1

0
dx

∫
ddk

(2π)d
2((2 − d)k2/d − x2q2)gµν + (1 − 2x)2qµqν

(k2 + x(1 − x)q2)2
. (B.10)

By employing the following basic result of dimensional regularization,

∫
ddk

(2π)d
(k2)ν

(k2 + M2)µ
=

(M2)ν−µ+d/2

(4π)d/2

Γ(ν + d/2)Γ(µ − ν − d/2)

Γ(d/2)Γ(µ)
. (B.11)

we can evaluate all the integral over momenta in eq. (B.10)

Iplan.
µν =

1

2(4π)d/2

∫ 1

0
dx

[
2(2 − d)

d
gµν(x(1 − x)q2)d/2−1 Γ(1 + d/2)Γ(1 − d/2)

Γ(d/2)Γ(2)
+

+((1 − 2x)2qµqν − 2x2q2gµν)(x(1 − x)q2)d/2−2 Γ(2 − d/2)

Γ(2)

]
=

=
1

2(4π)d/2

(
qµqν − q2gµν

) ∫ 1

0
dx

Γ(2 − d/2)

(M2)2−d/2
(1 − 2x)2. (B.12)

The term linear in 1 − 2x vanishes because it is a total derivative.

The non-planar contribution can be computed by means of the same techniques. The

computation is however more tedious because of the presence of the new vector q̃µ.

In−pl.
µν =

1

2

∫ 1

0
dx

∫
ddk

(2π)d
4kµkν + (1 − 2x)2qµqν − 2(k2 + x2q2)gµν

(k2 + x(1 − x)q2)2
eikϑq =
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=
1

2

∫ 1

0
dx

∫ ∞

0
dt t

∫
ddk

(2π)d
[
4kµkν+(1−2x)2qµqν−2(k2 + x2q2)gµν

]
eikϑq−t(k2+x(1−x)q2) =

=
1

2

1

(4π)d/2

∫ 1

0
dx

∫ ∞

0
dt t1−d/2

[
4

(
gµν

2t
− q̃µq̃ν

4t2

)
+ (1 − 2x)2qµqν−

−2

(
d

2t
− |q̃|2

4t2
+ x2q2

)
gµν

]
e−|q̃|2/4t−tx(1−x)q2

=

=
1

2

1

(4π)d/2

∫ 1

0
dx

∫ ∞

0
dt t1−d/2

[
gµν

(
2 − d

t
+

|q̃|2
2t2

− 2x2q2

)

+(1 − 2x)2qµqν −
q̃µq̃ν

t2

]
e−|q̃|2/4t−tx(1−x)q2

. (B.13)

Now the coefficient of gµν can be rearranged with the help of the following identity

( |q̃|2
2t2

− 2x2q2

)
e−

|q̃|2

4t
−tx(1−x)q2

=

=

[
2

d

dt

(
−|q̃|2

4t
− tx(1 − x)q2

)
+ 2x(1 − x)q2 − 2x2q2

]
e−

|q̃|2

4t
−tx(1−x)q2

=

=

[
2

d

dt

(
−|q̃|2

4t
− tx(1 − x)q2

)
− (2x − 1)2q2 + (1 − 2x)q2

]
e−

|q̃|2

4t
−tx(1−x)q2

= (B.14)

=

[
2

d

dt

(
e−

|q̃|2

4t
−tx(1−x)q2

)
− (2x − 1)2q2e−

|q̃|2

4t
−tx(1−x)q2 − 1

t

d

dx

(
e−

|q̃|2

4t
−tx(1−x)q2

)]
.

The last term vanishes when integrated over x since the integrand in x = 0 and x = 1

takes the same value. The first term instead can be rewritten as follows

∫ ∞

0
dt t1−d/22

d

dt

(
e−

|q̃|2

4t
−tx(1−x)q2

)
= −(2 − d)

∫ ∞

0
dtt−d/2 e−

|q̃|2

4t
−tx(1−x)q2

. (B.15)

This contribution exactly cancels the similar contribution in eq. (B.13). Thus we are left

with

In−pl.
µν =

1

2(4π)d/2

∫ 1

0
dx

∫ ∞

0
dt t1−d/2

[
(qµqν − gµνq2)(1 − 2x)2 − q̃µq̃ν

t2

]
e−

|q̃|2

4t
−tx(1−x)q2

=

=
1

(4π)d/2

∫ 1

0
dx

[
(qµqν − gµνq2)(1 − 2x)2

( |q̃|
2M

)2− d
2

K d
2
−2 (M |q̃|)−

− q̃µq̃ν

q̃2
2M2

( |q̃|
2M

)2− d
2

K d
2

(M |q̃|)
]

. (B.16)
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